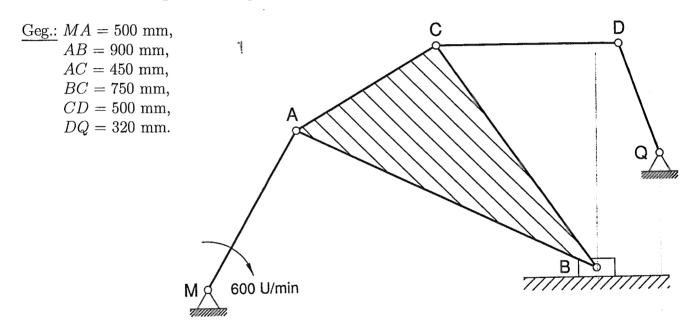
Fachhochschule München

FB 03 Maschinenbau

Prüfung im Fach: Maschinendynamik / Getriebetechnik

am 11. Juli 2006

Prof. Dr.-Ing. Uwe Hollburg


Name:

Hilfsmittel: sämtliche.

Bearbeitungszeit: 90 min.

1.Aufgabe

Ermitteln Sie auf graphischem Weg für die dargestellte Getriebelage sämtliche Geschwindigkeiten und Winkelgeschwindigkeiten!

2.Aufgabe

Eine Zentrifuge, Gesamtmasse M, mit statischer Unwucht U_{stat} , soll mit der Nenndrehzahl n_{nenn} betrieben werden. Bei der Aufstellung der Maschine wird eine elastische Lagerung an vier Punkten vorgesehen. Zur Auswahl stehen Gummipuffer mit den Eigenschaften:

Variante	Federkonstante [N/m]	viskose Dämpfung [kg/s]
1	$9,9 \cdot 10^4$	100
2	$8.8 \cdot 10^4$	200
3	$3,1\cdot 10^{5}$	300

- a) Begründen Sie, welche Lagerungsvariante zu verwenden ist!
- b) Wie groß ist die resultierende **Lagerkraft** die bei der ausgewählten Version in das Fundament eingeleitet wird?

<u>Geg.:</u> $M = 100 \text{ kg}, U_{stat} = 0.36 \text{ kgm}, n_{nenn} = 850 \text{ U/min}.$

Rückseite beachten!

Fachhochschule München

FB 03 Maschinenbau

Prüfung im Fach: Maschinendynamik / Getriebetechnik

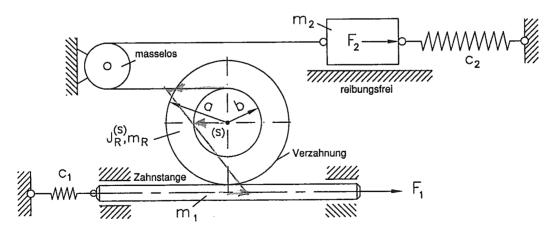
am 11. Juli 2006

Prof. Dr.-Ing. Uwe Hollburg

Seite 2

3. Aufgabe

Der elastisch gelagerte Antrieb eines Rüttelsiebes wird mit konstanter Drehzahl betrieben. Aufgrund der statischen Unwucht treten vertikale Schwingungen auf.


- a) Dem ruhenden System werden eine Anfangsauslenkung y_0 und eine Anfangsgeschwindigkeit v_0 eingeprägt. Wie lautet die homogene Lösung?
- b) Welche maximale Amplitude stellt sich beim Betrieb der Maschine ein?

y(t) Geg.: $M = 200 \text{ kg}, c = 1.5 \cdot 10^6 \text{ N/m}, r = 1000 \text{ kg/s},$ $\alpha = 25^{\circ}$, $n_{nenn} = 1000 \text{ U/min}$, $m_u = 2.2 \text{ kg}$, e = 150 mm, $y_0 = 3 \text{ mm}$, $v_0 = 0.01 \text{ m/s}$.

M

4. Aufgabe

Das dargestellte System besteht aus einem Zylinder R, der über eine Zahnstange 1 und eine Masse 2 harmonisch angeregt wird.

- a) Wie lauten die kinematischen Beziehungen für das System?
- b) Stellen Sie die Bewegungsdifferentialgleichungen auf!
- c) Berechnen Sie die Eigenfrequenzen!

 $\frac{\text{Geg.:}}{c_1 = 2000 \text{ N/m}, \, c_2 = 2.1 \text{ kg}, \, m_R = 10 \text{ kg}, \, J_R^{(S)} = 0.25 \text{ kgm}^2, \, a = 0.35 \text{ m}, \, b = 0.15 \text{ m}, \, c_1 = 2000 \text{ N/m}, \, c_2 = 4000 \text{ N/m}, \, F_{10} = 10 \text{ N}, \, F_{20} = 20 \text{ N}, \, \Omega = 3 \text{ Hz}.}$